博彩网-博彩通-百家乐-百家乐平台_百家乐_全讯网 (中国)·官方网站

學(xué)術(shù)動態(tài)

當(dāng)前位置: 首頁 - 學(xué)術(shù)動態(tài) - 正文

學(xué)術(shù)報告—Dynamical Systems on Networks and their Applications: Perspectives from Population Dynamics

閱讀量:

報 告 人:帥智圣

主 持 人:張曉穎

時    間:2019年6月14日10:00

地    點(diǎn):理學(xué)院五樓大數(shù)據(jù)實(shí)驗(yàn)室

主辦單位:理學(xué)院


報告人簡介:

帥智圣,分別于2001年和2004年在東北師范大學(xué)獲數(shù)學(xué)學(xué)士學(xué)位和應(yīng)用數(shù)學(xué)碩士學(xué)位,并于2010年在加拿大阿爾伯塔大學(xué)獲理學(xué)博士學(xué)位,后獲加拿大自然科學(xué)與工程研究委員會頒發(fā)的博士后獎(NSERC Postdoctoral Fellowship)資助,在維多利亞大學(xué)從事兩年博士后研究。從2012年8月起,任教于美國中佛羅里達(dá)大學(xué),現(xiàn)為該校數(shù)學(xué)系副教授(tenured)。主要研究興趣為微分方程、動力系統(tǒng)、及其在生物數(shù)學(xué)中的應(yīng)用。已在包括Journal of Differential Equations, Journal of Mathematical Biology, Proceedings of the American Mathematical Society, SIAM Journal on Applied Mathematics等國際著名刊物發(fā)表論文30余篇。其成果被同行廣泛引用,論文累計已被引用1700余次。獲多項(xiàng)學(xué)術(shù)、科研和教學(xué)獎勵,其中包括國家優(yōu)秀自費(fèi)留學(xué)生獎學(xué)金(中國),Izaak Walton Killam紀(jì)念獎學(xué)金(加拿大),中佛羅里達(dá)大學(xué)教學(xué)創(chuàng)新(TIP)獎。主持多項(xiàng)科研項(xiàng)目,其中包括美國國家科學(xué)基金委(NSF)和Simons Foundation科研項(xiàng)目。

觀點(diǎn)綜述:

Many large-scale dynamical systems arising from different fields of science and engineering can be regarded as coupled systems on networks. Examples include biological and artificial neural networks, nonlinear oscillators on lattices, complex ecosystems and the transmission models of infectious diseases in heterogeneous populations. Of particular interest is to investigate in what degree and fashion the dynamical behaviors are determined by the architecture of the network encoded in the directed graph. We will address this from population dynamics perspectives.

Specifically, many recent outbreaks and spatial spread of infectious diseases have been influenced by human movement over air, sea and land transport networks, and/or anthropogenic-induced pathogen/vector movement. These spatial movements in heterogeneous environments and networks are often asymmetric (biased). The effects of asymmetric movement versus symmetric movement will be investigated using several epidemiological models from the literature, and the analytical tools employed are from differential equations, dynamical systems to matrix theory and graph theory. These investigations provide new biological insights on disease transmission and control, and also highlight the need of a better understanding of dynamical systems on networks.

地址:中國吉林省長春市衛(wèi)星路6543號 

郵編:130022

吉ICP備050001994號-5

吉公網(wǎng)安備22010402000005號

百家乐试玩| 三穗县| 网络百家乐官网打揽| 巨星百家乐的玩法技巧和规则 | 澳门百家乐| 64风波| 百家乐官网平注法规则| 博彩网站排行| 真人百家乐平台下载| 博狗娱乐城注册| 百家乐赢法口诀| 百家乐真钱| 百家乐佛泰阁| 巴登娱乐城| 成人百家乐的玩法技巧和规则| 出国| 威尼斯人娱乐备用622| 百家乐官网平注法到6| 百家乐代理| 加州百家乐的玩法技巧和规则 | 大发888棋牌乐城下载| 网上百家乐赌博犯法吗| 嬴澳门百家乐官网的公式| 博彩通评级| 大哥大百家乐的玩法技巧和规则 | k7娱乐| 大发888娱乐城俄罗斯| 百家乐代理每周返佣| 百家乐官网公式书| 百家乐官网发牌千数| 二爷百家乐的玩法技巧和规则 | 广州百家乐官网桌子| 百家乐官网游戏的玩法| 不夜城百家乐的玩法技巧和规则| 喜来登百家乐官网的玩法技巧和规则| 百家乐官网技巧娱乐博彩| 真钱棋牌游戏| 威尼斯人娱乐场cqsscgw88| 百家乐牌九| 百家乐视频双扣游戏| 百家乐官网透明发牌机|